4.5 Article

Development of hydrophilic GO-ZnO/PES membranes for treatment of pharmaceutical wastewater

期刊

WATER SCIENCE AND TECHNOLOGY
卷 76, 期 3, 页码 501-514

出版社

IWA PUBLISHING
DOI: 10.2166/wst.2017.194

关键词

anti-fouling; double-casting; graphene oxide; photodegradation; polyethersulfone

向作者/读者索取更多资源

Membrane application in water reclamation is challenged by fouling which deteriorates membrane performance in terms of permeate flux and solute rejection. Several studies focusing on antifouling membranes incorporated with nanoparticles have been carried out, but these membranes are not yet a viable solution due to their high energy requirements and inability to completely remove or degrade trace organic compounds (TOrCs). Therefore, this study aims at fabricating polyethersulfone (PES) membranes for treatment of pharmaceutical wastewater by using a unique membrane synthesis approach. PES membranes were synthesised by casting two different solutions before coagulation. Therefore, the synthesis technique was called 'double-casting phase inversion'. The membranes were impregnated with nanohybrid graphene oxide-zinc oxide (GO-ZnO) to increase their hydrophilicity, rejection of pharmaceuticals (by decreasing membrane-solute hydrophobic interactions), resistance to organic fouling and photodegradation properties. The addition of GO-ZnO increased membrane hydrophilicity and pure water permeability. The rejection of TOrCs and antifouling properties were also improved due to a reduction in membrane-solute and membrane-foulant hydrophobic interactions, respectively. In addition to improved TOrC rejection properties and resistance to fouling, GO-ZnO/PES membranes degraded Brilliant Black.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据