4.8 Article

Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors

期刊

CARBON
卷 124, 期 -, 页码 64-71

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2017.08.044

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [51502125]
  2. Natural Science Foundation of Hebei Province of China [E2016408035, B2017408042]
  3. Hebei Education Department of China [BJ2016044]

向作者/读者索取更多资源

High specific surface area (SSA), especially effective specific surface area (E-SSA) of the active electrode materials is required for high performance supercapacitors. In this work, such materials (e.g. AC-KOH) were obtained using a scalable industrial method from biomass waste material, with controlling the pore size distribution and mesopores as the major contribution. Thus, an electrode material, with ultrahigh mesopore volume of 1.85 cm(3) g(-1), E-SSA up to 1771 m(2) g(-1) for organic electrolyte ion (TEA(+)) and taking 55% of the total SSA of 3237 m2 g(-1) with an excellent conductivity of 33 S m(-1), was obtained. With these outstanding properties, the materials demonstrate excellent double-layer capacitance with remarkable rate performance and good cycling stability. The material delivers capacitance up to 222, 202 and 188 F g(-1) at current density of 1 A g(-1) in aqueous, organic and ionic liquid electrolyte system, respectively. Meanwhile, it exhibits a high energy density of 80 W h kg(-1) in ionic liquid electrolyte at a power density of 870 W kg(-1). Furthermore, these materials can be produced in large scale from various biomass materials, and thus could be an excellent choice of the high performance materials required in the increasing important supercapacitor industry. (C) 2017 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据