4.8 Article

Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy

期刊

BIOMATERIALS
卷 146, 期 -, 页码 40-48

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2017.09.007

关键词

Nanoscale coordinate polymers; Drug delivery; Light-responsive release; Combination therapy; CT imaging

资金

  1. National Research Programs from Ministry of Science and Technology (MOST) of China [2016YFA0201200]
  2. National Natural Science Foundation of China [51525203]
  3. Collaborative Innovation Center of Suzhou Nano Science and Technology
  4. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

The development of smart drug delivery systems to realize controlled drug release for highly specific cancer treatment has attracted tremendous attention. Herein, nanoscale coordination polymers (NCPs) constructed from hafnium ions and bis-(alkylthio) alkene (BATA), a singlet-oxygen responsive linker, are fabricated and applied as nanocarriers to realize light-controlled drug release under a rather low optical power density. In this system, NCPs synthesized through a solvothermal method are sequentially loaded with chlorin e6 (Ce6), a photosensitizer, and doxorubicin (DOX), a chemotherapeutic drug, and then coated with lipid bilayer to allow modification with polyethylene glycol (PEG) to acquire excellent colloidal stability. The singlet oxygen produced by such NCP-Ce6-DOX-PEG nanocomposite can be used not only for photodynamic therapy, but also to induce the break of BATA linker and thus the destruction of nanoparticle structures under light exposure, thereby triggering effective drug release. Notably, with efficient tumor accumulation after intravenous injection as revealed by CT imaging, those NCP-Ce6-DOX-PEG nanoparticles could be utilized for combined chemo-photodynamic therapy with great antitumor efficacy. Thus, this work presents a unique type of NCP-based drug delivery system with biodegradability, sensitive responses to light, as well as highly efficient tumor retention for effective cancer combinational treatment. (C) 2017 Elsevier Ltd. All rights reserved..

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据