4.7 Article

Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies

期刊

CHEMICAL ENGINEERING JOURNAL
卷 327, 期 -, 页码 286-296

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2017.06.101

关键词

Magnetic nanoparticles; Rare earths; Functionalization; Citric acid; L-cysteine; Adsorption

资金

  1. Erasmus Mundus program (EM-WELCOME)

向作者/读者索取更多资源

Separation of rare earth ions (RE3+) from aqueous solution is a tricky problem due to their physicochemical similarities of properties. In this study, we investigate the influence of the functionalized ligands on the adsorption efficiency and selective adsorption of La3+, Nd3+, Gd3+ and Y3+ from aqueous solution using Magnetite (Fe3O4) nanoparticles (NPs) functionalized with citric acid (CA@Fe3O4 NPs) or L-cysteine (Cys@Fe3O4 NPs). The microstructure, thermal behavior and surface functionalization of the synthesized nanoparticles were studied. The general adsorption capacity of Cys@Fe3O4 NPs was found to be high (98 mg g (1)) in comparison to CA@Fe3O4 NPs (52 mg g (1)) at neutral pH 7.0. The adsorption kinetic studies revealed that the adsorption of RE3+ ions follows a pseudo second-order model and the adsorption equilibrium data fits well to the Langmuir isotherm. Thermodynamic studies imply that the adsorption process was endothermic and spontaneous in nature. Controlled desorption within 30 min of the adsorbed RE3+ ions from both Cys@Fe3O4 NPs and CA@Fe3O4 NPs was achieved with 0.5 M HNO3. Furthermore, Cys@Fe3O4 NPs exhibited a higher separation factor (SF) in the separation of Gd3+/La3+, Gd3+/Nd3+, Gd3+/Y3+ ions compared to CA@Fe3O4 NPs. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据