4.7 Article

Room Temperature Magnesite Precipitation

期刊

CRYSTAL GROWTH & DESIGN
卷 17, 期 11, 页码 5652-5659

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.7b00311

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery From University of British Columbia

向作者/读者索取更多资源

Magnesite (MgCO3) is one of the most stable sinks for carbon dioxide (CO2) and is therefore of great interest for long-term carbon storage. Although magnesite is the thermodynamically stable form of magnesium carbonate, the kinetic inhibition of low-temperature precipitation has hindered the development of carbon sequestration strategies that can be economically conducted under ambient temperature. Here, we document the precipitation of magnesite from waters (magnesite saturation index = 1.45) in batch reactors at room temperature with the aid of carboxylated polystyrene microspheres over the course of 70 days. Microspheres provide surfaces with a high density of carboxyl groups that act to bind and dehydrate Mg2+ ions in solution, thereby minimizing the kinetic barrier and facilitating magnesite formation. Magnesite crystals are observed on sphere surfaces and their organic matrixes. Mineral identification was confirmed by X-ray diffraction and selected area electron diffraction of a thin section obtained by focused ion beam milling. We demonstrate that kinetic barriers to magnesite formation can be overcome at ambient conditions. Incorporating surfaces with high carboxyl site densities into ex situ mineral carbonation processes and the use of such ligands for deep geologic CO2 storage may offer novel and economically viable strategies for permanent carbon storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据