4.4 Article

Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men

期刊

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
卷 116, 期 3, 页码 481-494

出版社

SPRINGER
DOI: 10.1007/s00421-015-3302-x

关键词

Immobilization; Aerobic training; Aging; Muscle metabolism; Perilipin protein; Intramuscular triglycerides

资金

  1. UNIK research program: Food, Fitness AMP
  2. Pharma for Health and Disease (Danish Ministry of Science, Technology and Innovation)
  3. Nordea Foundation
  4. A.P. Moller and Hustru Chastine Mc-Kinney Mollers Foundation

向作者/读者索取更多资源

Aging and inactivity lead to skeletal muscle metabolic inflexibility, but the underlying molecular mechanisms are not entirely elucidated. Therefore, we investigated how muscle lipid and glycogen stores and major regulatory proteins were affected by short-term immobilization followed by aerobic training in young and older men. 17 young (23 +/- A 1 years, 24 +/- A 1 kg m(-2), and 20 +/- A 2 % body fat) and 15 older men (68 +/- A 1 years; 27 +/- A 1 kg m(-2), and 29 +/- A 2 % body fat) underwent 2 weeks' one leg immobilization followed by 6 weeks' cycle training. Biopsies were obtained from m. vastus lateralis just before immobilization (at inclusion), after immobilization, and the after 6 weeks' training. The biopsies were analyzed for muscle substrates; muscle perilipin protein (PLIN), glycogen synthase (GS), synaptosomal-associated protein of 23 kDa (SNAP23) protein content, and muscle 3-hydroxyacyl-CoA dehydrogenase (HAD) activity The older men had higher intramuscular triglyceride (IMTG) (73 %) and Glycogen (16 %) levels compared to the young men, and IMTG tended to increase with immobilization. PLIN2 and 3 protein content increased with immobilization in the older men only. The young men had higher GS (74 %) protein compared to the older men. Immobilization decreased and training restored HAD activity, GS and SNAP23 protein content in young and older men. Evidence of age-related metabolic inflexibility is presented, seen as body fat and IMTG accumulation. The question arises as to whether IMTG accumulation in the older men is caused by or leading to the increase in PLIN2 and 3 protein content. Training decreased body fat and IMTG levels in both young and older men; hence, training should be prioritized to reduce the detrimental effect of aging on metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据