4.8 Review

Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

期刊

WATER RESEARCH
卷 113, 期 -, 页码 191-206

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2017.01.065

关键词

Cultivation; Microbiological drinking water quality; Flow cytometry (FCM); Heterotrophic plate counts (HPC); Routine water monitoring

资金

  1. FWO Flanders [G.0808.10N, V424114N]
  2. Inter-University Attraction Pole (IUAP) - Belgian Science Policy (BELSPO) [305 P7/25]
  3. King Abdullah University of Science and Technology (KAUST)
  4. Evides Waterbedrijf
  5. MERMAID, a Marie Sklodowska-Curie Initial Training Network [607492]

向作者/读者索取更多资源

Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据