4.8 Article

Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup

期刊

WATER RESEARCH
卷 123, 期 -, 页码 332-344

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2017.06.040

关键词

Water-oil separation; Calcite nanoparticles synthesis; Characterization; Hydrophobic-oleophilic CaCO3; Oil removal; Isothermal and kinetics

资金

  1. Ministry of Science and Technology (Taiwan) [MOST 105-2811-M-194-014, MOST 106-2811-M-194-006]

向作者/读者索取更多资源

The process of separating oil and water from oil/water mixtures is an attractive strategy to answer the menace caused by industrial oil spills and oily wastewater. In addition, water coproduced during hydrocarbon exploitation, which can be an economic burden and risk for freshwater resources, can become an important freshwater source after suitable water-oil separation. For oil-water separation purposes, considerable attention has been paid to the preparation of hydrophobic-oleophilic materials with modified surface roughness. However, due to issues of thermodynamic instability, costly and complex methods as well as lack of ecofriendly compounds, most of hydrophobic surface modified particles are of limited practical application. The study presents a facile procedure, to synthesize crystalline particles of calcite, which is the most stable polymorph of CaCO3 from industrial CaCO3 using oleic acid as an additive in a one pot synthesis method. The XRD results show that the synthesized particles were a well-crystallized form of calcite. The FTIR results reflect the appearance of the alkyl groups from the oleic acid in synthesized particles which promotes the production of calcite with 'rice shape' (1.64 gm) (aggregated by spherical nanoparticle of 19.56 nm) morphology with concomitant changes in its surface wettability from hydrophilic to hydrophobic. The synthesized particles exhibited near to super hydrophobicity with similar to 99% active ratio and a contact angle of 143.8 degrees. The synthesized hydrophobic calcite particles had an oleophilic nature where waste diesel oil adsorption capacity of synthesized calcium carbonate (HCF) showed a very high (>99%) and fast (7 s) oil removal from oil-water mixture. The functional group of long alkyl chain including of C=O bounds may play critical roles for adsorption of diesel oils. Moreover, the thermodynamically stable crystalline polymorph calcite (compared to vaterite) exhibited excellent recyclability. The isothermal study reflects the comparatively high value of correlation coefficient (R-2 = 0.94) for the Langmuir isotherm compared to those of the Freundlich isotherm (R-2 = 0.82) showed that the adsorption of diesel oil onto the hydrophobic CaCO3 adsorbent was much better described by the Langmuir isotherm. The kinetics study of second-order rate expression (R-2 = 0.99) more fitted with the experimental data compare to first-order model (R-2 = 0.92). The synthesized calcite exhibited a significant dual oleophilic and hydrophobic nature that can be applicable for oil adsorption/or removal purpose in oil contaminated areas in environment and/or industrial oily wastewater for green, simple, and inexpensive environmental cleanup. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据