4.8 Article

Visual in vivo degradation of injectable hydrogel by real-time and non-invasive tracking using carbon nanodots as fluorescent indicator

期刊

BIOMATERIALS
卷 145, 期 -, 页码 192-206

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2017.08.039

关键词

In vivo degradation; Visualization; Injectable hydrogel; Real-time and non-invasive; Fluorescence tracking

资金

  1. National Science Foundation of China [51372051, 51621091]
  2. State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology [2016TS03]
  3. HIT Environment and Ecology Innovation Special Funds [HSCJ201623]
  4. Innovation Talents of Harbin Science and Engineering [2013RFLXJ023]
  5. Fundamental Research Funds for Central Universities [HIT.IBRSEM.201302]
  6. National Natural Science Foundation of China [11372243, 11522219, 11532009]

向作者/读者索取更多资源

Visual in vivo degradation of hydrogel by fluorescence-related tracking and monitoring is crucial for quantitatively depicting the degradation profile of hydrogel in a real-time and non-invasive manner. However, the commonly used fluorescent imaging usually encounters limitations, such as intrinsic photobleaching of organic fluorophores and uncertain perturbation of degradation induced by the change in molecular structure of hydrogel. To address these problems, we employed photoluminescent carbon nanodots (CNDs) with low photobleaching, red emission and good biocompatibility as fluorescent indicator for real-time and non-invasive visual in vitro/in vivo degradation of injectable hydrogels that are mixed with CNDs. The in vitro/in vivo toxicity results suggested that CNDs were nontoxic. The embedded CNDs in hydrogels did not diffuse outside in the absence of hydrogel degradation. We had acquired similar degradation kinetics (PBS-Enzyme) between gravimetric and visual determination, and established mathematical equation to quantitatively depict in vitro degradation profile of hydrogels for the predication of in vivo hydrogel degradation. Based on the in vitro data, we developed a visual platform that could quantitatively depict in vivo degradation behavior of new injectable biomaterials by real-time and non-invasive fluorescence tracking. This fluorescence-related visual imaging methodology could be applied to subcutaneous degradation of injectable hydrogel with down to 7 mm depth in small animal trials so far. This fluorescence-related visual imaging methodology holds great potentials for rational design and convenient in vivo screening of biocompatible and biodegradable injectable hydrogels in tissue engineering. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据