4.8 Article

Role of dissolved Mn(III) in transformation of organic contaminants: Non-oxidative versus oxidative mechanisms

期刊

WATER RESEARCH
卷 111, 期 -, 页码 234-243

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2017.01.013

关键词

Trivalent manganese; Organic contaminants; Non-oxidation; Oxidation

资金

  1. National Natural Science Foundation of China [21607131, 41301241]
  2. Natural Science Foundation of Zhejiang Province [LR16E08003]

向作者/读者索取更多资源

Mn(III) is a strong oxidant for one electron transfer, which may be important in the transformation of organic contaminants during water/wastewater treatment and biogeochemical redox processes. This study explored the reaction mechanisms of dissolved Mn(III) with organics. The role of dissolved Mn(III) either as a catalyst or an oxidant in reactions with organics was recognized. Aquo and/or hydroxo (or free) Mn(III), generated from the bisulfite activated permanganate process, facilitated efficient N-dealkylation of atrazine via a beta-elimination mechanism, resulting no net redox reaction. In contrast, free Mn(III) degraded 4-chlorophenol via intramolecular redox processes, the same as hydroxyl radical ((OH)-O-center dot), resulting in dechlorination, (OH)-O-center dot substitution, ring-opening and mineralization. Mn(III)-pyrophosphate compounds did not react with atrazine because complexation by pyrophosphate rendered Mn(III) unable to bond with atrazine, thus the electron and proton transfers between the reactants couldn't occur. However, it degraded 4-chlorophenol at a slower rate compared to free Mn(III), due to its reduced oxidation potential. These results showed two distinct mechanisms on the degradation of organic contaminants and the insights may be applied in natural manganese-rich environments and water treatment processes with manganese compounds. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据