4.8 Article

UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation

期刊

WATER RESEARCH
卷 114, 期 -, 页码 246-253

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2017.02.015

关键词

UV/chlorine; Advanced oxidation process; Benzalkonium chloride; Chlorinated products; Biotoxicity

资金

  1. National Natural Science Foundation of China [51578308]
  2. National Key Research and Development Program of China for International Science & Innovation Cooperation Major Project [2016YFE0118800]
  3. Collaborative Innovation Center for Regional Environmental Quality, China

向作者/读者索取更多资源

Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/ chlorine. The pseudo first order rate constant (k(obs), (DDBAC)) increased from 0.046 min(-1) to 0.123 min(-1) in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 mu g/L), while other chlorinated products did not exceed 10 mu g/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据