4.7 Article

Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites

期刊

COMPOSITES PART B-ENGINEERING
卷 129, 期 -, 页码 233-242

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2017.07.081

关键词

Rotary ultrasonic machining; Ceramic matrix composites; Surface morphology; Fiber fracture

资金

  1. National Natural Science Foundation of China [51475260]
  2. Beijing Natural Science Foundation [3141001]

向作者/读者索取更多资源

The carbon fibers fracture mechanism depending on fiber orientation significantly affects the machined surface quality of C/SiC composites. The rotary ultrasonic machining (RUM) has been proved to be a beneficial method for C/SiC composites drilling with minor tearing defects at the hole exits. In contrast, the effects of tool vibration on surface topography in RUM of C/SiC composites considering fiber orientation have not been reported. In order for a unique evaluation of surface generating mechanism in RUM of C/SiC composites, several RUM experiments were conducted on 2D-C/SiC composites. The micro structural characteristics of the hole surfaces under various fiber directions, ultrasonic amplitudes and spindle speeds were analyzed. The fiber fracture mechanism in RUM of C/SiC was discovered through theoretical analysis. The results displayed that both fiber cutting direction and cutting speeds significantly affect the surface topography in RUM and CG of C/SiC composites. The tool ultrasonic vibration could contribute to the hole surface quality improvement in RUM of C/SiC composites by the fiber fracture mechanism alteration. With the ultrasonic vibration contribution, the fiber cutting direction tended towards 90 degrees and the cutting speeds were increased. In contrast, due to the non-monotonic effect of the cutting speed on the surface roughness, only when the spindle speeds were relatively low, the higher ultrasonic amplitude apparently contributed to the hole surface quality further improvement. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据