4.6 Article

Optimization of Energy Consumption in the Biological Reactor of a Wastewater Treatment Plant by Means of Oxy Fuzzy and ORP Control

期刊

WATER AIR AND SOIL POLLUTION
卷 228, 期 8, 页码 -

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s11270-017-3462-x

关键词

Aeration; Biological reactor; Energy; Fuzzy logic; ORP; WWTP

向作者/读者索取更多资源

Aeration of the biological reactor in wastewater treatment plants (WWTPs) represents one of the major cost items, which may account for more than 50% of the total energy consumption. Therefore, airflow rate must be supplied based on the real needs of the biological reactions and the goals to be achieved in terms of removal efficiency and effluent quality. Among the different strategies available to optimize energy consumption of air supply, the Oxy Fuzzy logic and oxidation reduction potential (ORP)-based control systems have proven to be efficient and reliable. The present study compares the effects of these two control systems in terms of energy consumption and efficiency of COD and ammonia oxidation in the activated sludge reactors of two WWTPs for domestic sewage. Both systems allowed to largely comply with the limits set on the effluent for COD and ammonia in spite of the dynamic pattern of the influent load. The Oxy Fuzzy system led to reducing energy consumption by 13% while the ORP control system only by 2%, as average per year. The Oxy Fuzzy system showed higher flexibility, being more capable of adapting the set-points in relation to the influent load. The ORP system seemed to be more suitable for plants where the influent load does not change significantly: the set-points are fixed and the input load can be properly managed only for limited variations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据