4.7 Article

When black holes collide: Probing the interior composition by the spectrum of ringdown modes and emitted gravitational waves

期刊

PHYSICAL REVIEW D
卷 96, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.96.064033

关键词

-

资金

  1. Israel Science Foundation [1294/16]
  2. NRF [85353]
  3. NRF Competitive Programme [93595]
  4. JSPS
  5. NSF [PHY-1305682]
  6. Simons Foundation
  7. Direct For Mathematical & Physical Scien
  8. Division Of Physics [1607449] Funding Source: National Science Foundation

向作者/读者索取更多资源

The merger of colliding black holes (BHs) should lead to the production of ringdown or quasinormal modes (QNMs), which may very well be sensitive to the state of the interior. We put this idea to the test with a recent proposal that the interior of a BH consists of a bound state of highly excited, long, closed, interacting strings; figuratively, a collapsed polymer. We show, using scalar perturbations for simplicity, that such BHs do indeed have a distinct signature in their QNM spectrum: A new class of modes whose frequencies are parametrically lower than the lowest-frequency mode of a classical BH and whose damping times are parametrically longer. The reason for the appearance of the new modes is that our model contains another scale, the string length, which is parametrically larger than the Planck length. This distinction between the collapsed-polymer model and general-relativistic BHs could be made with gravitational-wave observations and offers a means for potentially measuring the strength of the coupling in string theory. For example, GW150914 already allows us to probe the strength of the string coupling near the regime which is predicted by the unification of the gravitational and gauge-theory couplings. We also derive bounds on the amplitude of the collapsed-polymer QNMs that can be placed by current and future gravitational-wave observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据