4.7 Article

Environmental impact assessment of different end-of-life LCD management strategies

期刊

WASTE MANAGEMENT
卷 59, 期 -, 页码 432-441

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2016.09.024

关键词

End-of-life LCD; Environmental impact; Indium; Recycling processes; Life cycle assessment

资金

  1. European Commission [308549]

向作者/读者索取更多资源

The strong growth of the electrical and electronic equipment production combined with its short lifespan are causing the production of a significant amount of waste to treat. In particular, the present paper focuses on end-of-life liquid crystal displays (LCDs) for their significant content of valuable materials, like plastic, glass and metals that could be recovered after dismantling. In the recent literature, traditional LCD recycling processes are combined with innovative treatments, which allow to recover critical raw materials, such as indium. In this context, we have evaluated the environmental impact of four different strategies of end-of-life LCD management: the disposal in landfilling sites, the incineration, the traditional recycling treatment and an innovative process also addressed to the recovery of indium. The traditional recycling treatment resulted to be the best scenario for the environment. Indeed, a life cycle assessment study gave following environmental burdens (if negative they are credits): 18, 81, 68, 60 kg CO2-equiv. and 0.08, 0.01, 0,25, -0.18 mol H+-equiv., for the four scenarios in the categories of global warming and acidification, respectively. The limit of the variability of LCD composition was overcome including additional literature data in the study. In order to improve the innovative process sustainability, a system of water recirculation was optimized with a consequent impact decrease of 35% in the global warming category. Nevertheless, this action should be combined with an increase of indium concentration in the panel because the low metal content represents the bottleneck of the overall approach. In this regard, a sensitivity analysis showed that an increase of at least five times in indium concentration in the waste is needed to observe an advantage of the innovative vs the traditional recycling process, when the impact category of climate change is considered. As a whole, the life cycle assessment was confirmed as a key tool for the choice of the best option of WEEE management. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据