4.6 Article

Robust cost function for optimizing chamfer masks

期刊

VISUAL COMPUTER
卷 34, 期 5, 页码 617-632

出版社

SPRINGER
DOI: 10.1007/s00371-017-1367-8

关键词

Chamfering; Euclidean; Mean absolute error; Optimization

资金

  1. China Postdoctoral Science Foundation

向作者/读者索取更多资源

Chamfering, a mask-driven technique, refers to a process of propagating local distances over an image to estimate a reference metric. Performance of the technique depends on the design of chamfer masks using cost functions. To date, most scholars have been using a mean absolute error and a mean squared error to formulate optimization problems for estimating weights in the chamfer masks. However, studies have shown that these optimization functions endure some potential weaknesses, including biasedness and sensitivity to outliers. Motivated by the weaknesses, the present work proposes an alternative difference function, RLog, that is unbiased, symmetrical, and robust. RLog takes the absolute logarithm of the relative accuracy of the estimated distance to compute optimal chamfer weights. Also, we have proposed an algorithm to map entries of the designed real-valued chamfer masks into integers. Analytical and experimental results demonstrate that chamfering based on our weights generate polygons and distance maps with lower errors. Methods and results of our work may be useful in robotics to address the matching problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据