4.8 Article

Highly Efficient Rubrene-Graphene Charge-Transfer Interfaces as Phototransistors in the Visible Regime

期刊

ADVANCED MATERIALS
卷 29, 期 41, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201702993

关键词

graphene phototransistors; high quantum efficiency; organic single crystals; photodetectors; rubrene

资金

  1. EPSRC [464, EP/J000396/1, EP/K07160/1, EP/K010050/1, EP/G036101/1, EP/M001024/1, 465 EP/M002438/1]
  2. Royal Society international Exchanges Scheme [2012/R3, 466 2013/R2]
  3. European Commission [FP7-ICT-2013-613024-GRASP]
  4. Engineering and Physical Sciences Research Council [EP/K017160/1, EP/K010050/1, 1545105, EP/J000396/1, EP/M001024/1, EP/M002438/1, EP/G036101/1] Funding Source: researchfish
  5. EPSRC [EP/K017160/1, EP/M002438/1, EP/G036101/1, EP/M001024/1, EP/J000396/1, EP/K010050/1] Funding Source: UKRI

向作者/读者索取更多资源

Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge-transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra-broadband imaging but polycrystalline and amorphous thin films have shown inferior performance compared to inorganic semiconductors. Here, the long-range order in rubrene single crystals is utilized to engineer organic-semiconductor-graphene phototransistors surpassing previously reported photogating efficiencies by one order of magnitude. Phototransistors based upon these interfaces are spectrally selective to visible wavelengths and, through photoconductive gain mechanisms, achieve responsivity as large as 10(7) A W-1 and a detectivity of 9 x 10(11) Jones at room temperature. These findings point toward implementing low-cost, flexible materials for amplified imaging at ultralow light levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据