4.8 Article

Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 44, 页码 38870-38876

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b15237

关键词

micromachine; topographical manipulation; acoustic microstreaming; microrotor; dynamic assembly; biological isolation

资金

  1. Defense Threat Reduction Agency Joint Science and Technology Office for Chemical and Biological Defense [HDTRA1-14-1-0064]
  2. National Natural Science Foundation of China [51505222]
  3. China Scholarship Council (CSC)
  4. UC MEXUS-CONACYT

向作者/读者索取更多资源

Precise and reproducible manipulation of synthetic and biological microscale objects in complex environments is essential for many practical biochip and microfluidic applications. Here, we present an attractive acoustic topographical manipulation (ATM) method to achieve efficient and reproducible manipulation of diverse microscale objects. This new guidance method relies on the acoustically induced localized microstreaming forces generated around microstructures, which are capable of trapping nearby microobjects and manipulating them along a determined trajectory based on local topographic features. This unique phenomenon is investigated by numerical simulations examining the local microstreaming in the presence of microscale boundaries under the standing acoustic wave. This method can be used to manipulate a single microobject around a complex structure as well as collectively manipulate multiple objects moving synchronously along complicated shapes. Furthermore, the ATM can serve for automated maze solving by autonomously manipulating microparticles with diverse geometries and densities, including live cells, through complex maze-like topographical features without external feedback, particle modification, or adjustment of operational parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据