4.8 Article

Modeling and optimal steady-state operating points of an ORC waste heat recovery system for diesel engines

期刊

APPLIED ENERGY
卷 206, 期 -, 页码 329-345

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.08.151

关键词

Waste heat recovery; Mathematical modeling; Optimal operating points; Automotive systems

向作者/读者索取更多资源

Waste heat recovery (WHR) systems based on the Organic Rankine Cycle (ORC) are a promising method to reduce the fuel consumption of heavy-duty diesel engines. This article considers a setup with two parallel evaporators and a hydraulically closed low-pressure part. This gives additional degrees of freedom compared to a pressure balanced low-pressure part and thus allows to increase the recovering efficiency. However, these additional degrees of freedom lead to a higher system complexity, which complicates the calculation of power maximizing steady-state operating points. To determine these power maximizing steady-state operating points, this article develops a model based optimization strategy. For this task, models from the literature are extended and validated by test bench measurements. It is shown that the model has a high accuracy both in steady-state and dynamic operating situations. The optimal steady-state operating points of the considered WHR system are compared with other system topologies, utilizing, e.g., a pressure balanced low-pressure part or a single evaporator. The results of this paper can be utilized as the basis for designing optimal control strategies for the considered WHR system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据