4.8 Article

What is the most energy efficient route for biogas utilization: Heat, electricity or transport?

期刊

APPLIED ENERGY
卷 206, 期 -, 页码 1076-1087

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.08.068

关键词

Biogas; Policy; Energy efficiency; Biogas utilization; Electricity; Heat; Transport

资金

  1. European Union's Seventh Framework Programme for research, technological development and demonstration [316838]

向作者/读者索取更多资源

Biogas is a renewable energy source that can be used either directly or through various pathways (e.g. upgrading to bio-methane, use in a fuel cell or conversion to liquid fuels) for heat, electricity generation or mechanical energy for transport. However, although there are various options for biogas utilization, there is limited guidance in the literature on the selection of the optimum route, and comparison between studies is difficult due to the use of different analytical frameworks. The aim of this paper was to fill that knowledge gap and to develop a consistent framework for analysing biogas-to-energy exploitation routes. The paper evaluated 49 biogas-to-energy routes using a consistent life cycle analysis method focusing on energy efficiency as the chosen crtierion. Energy efficiencies varied between 8% and 54% for electricity generation; 16% and 83% for heat; 18% and 90% for electricity and heat; and 4% and 18% for transport. Direct use of biogas has the highest efficiencies, but the use of this fuel is typically limited to sites co-located with the anaerobic digestion facility, limiting available markets and applications. Liquid fuels have the advantage of versatility, but the results show consistently low efficiencies across all routes and applications. The energy efficiency of bio-methane routes competes well with biogas and comes with the advantage that it is more easily transported and used in a wide variety of applications. The results were also compared with fossil fuels and discussed in the context of national policies. This research resulted in the development of a flexible framework for comparing energy efficiencies which can provide the basis for further research on optimizing the sustainability of biogas-to-energy systems across a range of indicators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据