4.8 Article

Operational flexibility of future generation portfolios with high renewables

期刊

APPLIED ENERGY
卷 206, 期 -, 页码 32-41

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.08.164

关键词

Generation planning; Operational flexibility; Cycling; Renewable generation; National Electricity Market (NEM)

资金

  1. Australian Renewable Energy Agency (ARENA)
  2. CSIRO

向作者/读者索取更多资源

The costs and technical implications of thermal plant operating constraints within high renewable electricity systems are receiving growing attention. However, many future scenario modelling studies take limited consideration of such constraints. In this study, different generation portfolios were modelled over a year's dispatch for the Australian National Electricity Market (NEM), to examine operational impacts and the costs of different power plant operating constraints. As the level of variable renewable energy (VRE) increases, thermal plants are subject to frequent cycling (ramp up/down and start/stop) as they are dispatched to accommodate the outputs of VRE. However, the extent of the operational impact depends on the mix of conventional technologies within the portfolio. Many coal and gas operational constraints were found to be inexpensive, even in a 85% renewable scenario with primarily wind and solar generation. The combined impact of ramp rate constraints, minimum generation constraints and start-up costs was found to add only 0.1-3% to total annual system costs. In contrast, a minimum synchronous generation (SG) constraint (intended to maintain minimum levels of system inertia) was found to have a significant impact on system costs when the renewable energy penetration exceeds 40%, and a moderate cost of greenhouse emissions is assumed. For a renewable share of less than 40%, the SG requirement has negligible impact since synchronous generators are already supplying at least 40% of the demand in each dispatch period. A 50% SG requirement increases total system cost by 20% in a 85% renewable portfolio. Similarly, costs are increased by 10% in a 60% renewable portfolio. This suggests significant value in investigating measures that minimize the need for a stringent SG constraint in a future carbon constrained world.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据