4.8 Article

Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 217, 期 -, 页码 551-559

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2017.06.018

关键词

One-dimensional; Heterostructure; Photocatalysis; Noble-metal-free; Hydrogen production

资金

  1. National Natural Science Foundation of China [21606175, 51236007]
  2. China Postdoctoral Science Foundation [2014M560768]
  3. China Fundamental Research Funds for the Central Universities [xjj2015041]

向作者/读者索取更多资源

Constructing heterostructured photocatalysts to facilitate spatial charge separation is deemed to be central to improving photocatalytic hydrogen production. Herein, we reported the synthesis of Ni2P-Cd0.9Zn0.1S/graphitic carbon nitride (g-C3N4) heterostructure for photocatalytic hydrogen production under visible-light irradiation. It was revealed that the ternary photocatalysts exhibited a one-dimensional morphology. Ni2P nanoparticles and a layer of g-C3N4 were tightly deposited on the surface of Cd0.9Zn0.1S nanorods. The optimal hydrogen evolution rate over Ni2P-Cd0.9Zn0.1S/g-C3N4 was similar to 2100 mu mol h(-1) mg(-1), corresponding to an apparent quantum yield as high as 73.2% at 420nm. Meanwhile, the g-C3N4 layer could effectively collect the photo-induced holes from Cd0.9Zn0.1S, which substantially alleviated the photocorrosion of metal sulfide and led to an excellent stability for 90 h. A detail analysis of the action mechanism by photoluminescence, surface photovoltage, and electrochemical measurements revealed that the dramatically improved photocatalytic activity should be ascribed to highly efficient spatial separation of photo-induced charge carriers, as well as accelerated surface reaction by Ni2P cocatalysts. It is believed that the present work supplies an effective way to obtain non-precious heterostructured photocatalytic system for high-quantum-yield and stable hydrogen production. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据