4.5 Article

Electrochemical CO2 Reduction: A Classification Problem

期刊

CHEMPHYSCHEM
卷 18, 期 22, 页码 3266-3273

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.201700736

关键词

classification; CO2 reduction; electrochemistry; formaldehyde reduction; scaling relation

资金

  1. Climate-KIC under the EnCO2re project
  2. Carlsberg Foundation [CF15-0165]
  3. Innovation Fund Denmark [ProActivE 5124-00003A]
  4. German Federal Ministry for Education and Research (BMBF) under project CO2EKAT [03SF0523]

向作者/读者索取更多资源

In this work, we propose four non-coupled binding energies of intermediates as descriptors, or genes, for predicting the product distribution in CO2 electroreduction. Simple reactions can be understood by the Sabatier principle (catalytic activity vs. one descriptor), while more complex reactions tend to give multiple very different products and consequently the product selectivity is a more complex property to understand. We approach this, as a logistical classification problem, by grouping metals according to their major experimental product from CO2 electroreduction: H-2, CO, formic acid and beyond CO* (hydrocarbons or alcohols). We compare the groups in terms of multiple binding energies of intermediates calculated by density functional theory. Here, we find three descriptors to explain the grouping: the adsorption energies of H*, COOH*, and CO*. To further classify products beyond CO*, we carry out formaldehyde experiments on Cu, Ag, and Au and combine these results with the literature to group and differentiate alcohol or hydrocarbon products. We find that the oxygen binding (adsorption energy of CH3O*) is an additional descriptor to explain the alcohol formation in reduction processes. Finally, the adsorption energy of the four intermediates, H*, COOH*, CO*, and CH3O*, can be used to differentiate, group, and explain products in electrochemical reduction processes involving CO2, CO, and carbon-oxygen compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据