4.6 Article

Significance of Lateral Pillar in Osteonecrosis of Femoral Head: A Finite Element Analysis

期刊

CHINESE MEDICAL JOURNAL
卷 130, 期 21, 页码 2569-2574

出版社

MEDKNOW PUBLICATIONS & MEDIA PVT LTD
DOI: 10.4103/0366-6999.217077

关键词

Displacement; Finite Element Analysis; Osteonecrosis of the Femoral Head; Stress; Structure Collapse

资金

  1. National Natural Science Foundation of China [81673776]
  2. Capital Health Research and Development of Special [2016-2-4062]

向作者/读者索取更多资源

Background: The lateral pillar of the femoral head is an important site for disease development such as osteonecrosis of the femoral head. The femoral head consists of medial, central, and lateral pillars. This study aimed to determine the biomechanical effects of early osteonecrosis in pillars of the femoral head via a finite element (FE) analysis. Methods: A three-dimensional FE model of the intact hip joint was constructed from the image data of a healthy control. Further, a set of six early osteonecrosis models was developed based on the three-pillar classification. The von Mises stress and surface displacements were calculated for all models. Results: The peak values of von Mises stress in the cortical and cancellous bones of normal model were 6.41 MPa and 0.49 MPa, respectively. In models with necrotic lesions in the cortical and cancellous bones, the von Mises stress and displacement of lateral pillar showed significant variability: the stress of cortical bone decreased from 6.41 MPa to 1.51 MPa (76.0% reduction), while cancellous bone showed an increase from 0.49 MPa to 1.28 MPa (159.0% increase); surface displacements of cortical and cancellous bones increased from 52.4 mu m and 52.1 mu m to 67.9 mu m (29.5%) and 61.9 mu m (18.8%), respectively. In addition, osteonecrosis affected not only pillars but also adjacent structures in terms of the von Mises stress and surface displacement levels. Conclusions: This study suggested that the early-stage necrosis in the femoral head could increase the risk of collapse, especially in lateral pillar. On the other hand, the cortical part of lateral pillar was found to be the main biomechanical support of femoral head.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据