4.6 Article

Crystal Structure of TetR Family Repressor AlkX from Dietzia sp Strain DQ12-45-1b Implicated in Biodegradation of n-Alkanes

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01447-17

关键词

AlkX; TetR family repressor; n-alkane biodegradation; crystal structure; Dietzia

资金

  1. National Natural Science Foundation of China [31225001, 31300108, 31470745, 31600082]
  2. National High Technology Research and Development Program of China [2012AA02A703]

向作者/读者索取更多资源

n-Alkanes are ubiquitous in nature and are widely used by microorganisms as carbon sources. Alkane hydroxylation by alkane monooxygenases is a critical step in the aerobic biodegradation of n-alkanes, which plays important roles in natural alkane attenuation and is used in industrial and environmental applications. The alkane oxidation operon, alkW1-alkX, in the alkane-degrading strain Dietzia sp. strain DQ12-45-1b is negatively autoregulated by the TetR family repressor AlkX via a product positive feedback mechanism. To predict the gene regulation mechanism, we determined the 3.1-angstrom crystal structure of an AlkX homodimer in a non-DNA-bound state. The structure showed traceable long electron density deep inside a hydrophobic cavity of each monomer along the long axis of the helix bundle, and further gas chromatography-mass spectrometry analysis of AlkX revealed that it contained the Escherichia coli-derived long-chain fatty acid molecules as a ligand. Moreover, an unusual structural feature of AlkX is an extra helix, alpha 6', forming a lid-like structure with alpha 6 covering the inducer-binding pocket and occupying the space between the two symmetrical DNA-binding motifs in one dimer, indicating a distinct conformational transition mode in modulating DNA binding. Sequence alignment of AlkX homologsfrom Dietzia strains showed that the residues involved in DNA and inducer binding are highly conserved, suggesting that the regulation mechanisms of n-alkane hydroxylation are possibly a common characteristic of Dietzia strains. IMPORTANCE With n-alkanes being ubiquitous in nature, many bacteria from terrestrial and aquatic environments have evolved n-alkane oxidation functions. Alkane hydroxylation by alkane monooxygenases is a critical step in the aerobic biodegradation of n-alkanes, which plays important roles in natural alkane attenuation and petroleum-contaminating environment bioremediation. The gene regulation of the most common alkane hydroxylase, AlkB, has been studied widely in Gram-negative bacteria but has been less explored in Gram-positive bacteria. Our previous study showed that the TetR family regulator (TFR) AlkX negatively autoregulated the alkane oxidation operon, alkW1-alkX, in the Gram-positive strain Dietzia sp. strain DQ12-45-1b. Although TFRs are one of the most common transcriptional regulator families in bacteria, the TFR involved in n-alkane metabolism has been reported only recently. In this study, we determined the crystal structure of AlkX, which implies a distinct DNA/ligand binding mode. Our results shed light upon the regulation mechanism of the common alkane degradation process in nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据