4.7 Article

Characterisation of landfill leachate by EEM-PARAFAC-SOM during physical-chemical treatment by coagulation-flocculation, activated carbon adsorption and ion exchange

期刊

CHEMOSPHERE
卷 186, 期 -, 页码 873-883

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.08.035

关键词

Landfill leachate; Coagulation; GAC adsorption; Ion exchange; Parallel factor analysis (PARAFAC); Self-organizing maps (SOM)

资金

  1. KIRDI (Kenya)
  2. IWT-Tetra project FYBAR [140218]
  3. Vlakwa

向作者/读者索取更多资源

The combination of fluorescence excitation-emission matrices (EEM), parallel factor analysis (PARAFAC) and self-organizing maps (SOM) is shown to be a powerful tool in the follow up of dissolved organic matter (DOM) removal from landfill leachate by physical-chemical treatment consisting of coagulation, granular activated carbon (GAC) and ion exchange. Using PARAFAC, three DOM components were identified: C1 representing humic/fulvic-like compounds; C2 representing tryptophan-like compounds; and C3 representing humic-like compounds. Coagulation with ferric chloride (FeCl3) at a dose of 7 g/L reduced the maximum fluorescence of C1, C2 and C3 by 52%, 17% and 15% respectively, while poly-aluminium chloride (PACl) reduced C1 only by 7% at the same dose. DOM removal during GAC and ion exchange treatment of raw and coagulated leachate exhibited different profiles. At less than 2 bed volumes (BV) of treatment, the humic components C1 and C3 were rapidly removed, whereas at BV >= 2 the tryptophan-like component C2 was preferentially removed. Overall, leachate treated with coagulation +10.6 BV GAC +10.6 BV ion exchange showed the highest removal of C1 (39% - FeCl3, 8%-PACl), C2 (74% - FeCl3, 68% - PACl) and no C3 removal; whereas only 52% C2 and no C1 and C3 removal was observed in raw leachate treated with 10.6 BV GAC + 10.6 BV ion exchange only. Analysis of PARAFAC-derived components with SOM revealed that coagulation, GAC and ion exchange can treat leachate at least 50% longer than only GAC and ion exchange before the fluorescence composition of leachate remains unchanged. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据