4.8 Article

3D-Printed Metal-Organic Framework Monoliths for Gas Adsorption Processes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 41, 页码 35908-35916

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b11626

关键词

3D printing self-standing monolith; MOF-74(Ni); UTSA-16(Co); CO2 capture

资金

  1. NASA-EPSCoR [NNX15AK38A]
  2. NASA [NNX15AK38A, 808084] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Metal organic frameworks (MOFs) have shown promising performance in separation, adsorption, reaction, and storage of various industrial gases; however, their large-scale applications have been hampered by the lack of a proper strategy to formulate them into scalable gas solid contactors. Herein, we report the fabrication of MOF monoliths using the 3D printing technique and evaluation of their adsorptive performance in CO, removal from air. The 3D-printed MOF-74(Ni) and UTSA-16(Co) monoliths with MOF loadings as high as 80 and 85 wt %, respectively, were developed, and their physical and structural properties were characterized and compared with those of MOF powders. Our adsorption experiments showed that, upon exposure to 5000 ppm (0.5%) CO, at 25 degrees C, the MOF-74(Ni) and UTSA-16(Co) monoliths can adsorb CO, with uptake capacities of 1.35 and 1.31 mmol/g, respectively, which are 79% and 87% of the capacities of their MOF analogues under the same conditions. Furthermore, a stable performance was obtained for self-standing 3D -printed monolithic structures with relatively good adsorption kinetics. The preliminary findings reported in this investigation highlight the advantage of the robocasting (3D printing) technique for shaping MOF materials into practical configurations that are suitable for various gas separation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据