4.8 Article

Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 41, 页码 36311-36319

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b11712

关键词

aramid fiber; NiCo2S4 nanowires; reduced graphene oxide; composite; mechanical properties; Joule heating

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2015R1A2A2A01005499, NRF-2017R1A5A1015311]

向作者/读者索取更多资源

Well-aligned NiCo2S4 nanowires, synthesized hydro thermally on the surface of woven Kevlar fiber (WKF), were used to fabricate composites with reduced graphene oxide (rGO) dispersed in polyester resin (PES) by means of vacuum-assisted resin transfer molding. The NiCo2S4 nanowires were synthesized with three precursor concentrations. Nanowire growth was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Hierarchical and high growth density of the nanowires led to exceptional mechanical properties of the composites. Compared with bare WKF/PES, the tensile strength and absorbed impact energy were enhanced by 96.2% and 92.3%, respectively, for WKF/NiCo2S4/rGO (1.5%)/PES. The synergistic effect of NiCo2S4 nanowires and rGO in the fabricated composites improved the electrical conductivity of insulating WKF/PES composites, reducing the resistance to similar to 10(3) Omega. Joule heating performance depended strongly on the precursor concentration of the nanowires and the presence of rGO in the composite. A maximum surface temperature of 163 degrees C was obtained under low-voltage (5 V) application. The Joule heating performance of the composites was demonstrated in a surface deicing experiment; we observed that 17 g of ice melted from the surface of the composite in 14 min under an applied voltage of 5 V at -28 degrees C. The excellent performance of WKF/NiCo2S4/rGO/PES composites shows great potential for aerospace structural applications requiring outstanding mechanical properties and Joule heating capability for deicing of surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据