4.8 Article Proceedings Paper

Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach

期刊

APPLIED ENERGY
卷 204, 期 -, 页码 1513-1525

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.04.031

关键词

Energy recovery; Methane hydrates; Unconventional gas; Hydrate bearing sediment; Depressurization; Gas production

资金

  1. National University of Singapore [R-279-000-420-750, R-261-508-001-646]
  2. NUS
  3. industrial postgraduate programme (IPP)

向作者/读者索取更多资源

A huge amount of natural gas hydrates remains untapped in permafrost and continental margin. While several short term field production tests have been carried out, the underlying challenges during hydrate dissociation in porous media, such as the interdependent production behavior of gas and water, is still not well understood. In this work, we employed depressurization technique to recover natural gas from a water saturated hydrate bearing sediment (40% S-H, 50% S-A and 10% S-G) at 281.5 K surrounding temperature. During depressurization, the bottom hole pressure (BHP) was maintained at constant pressures of 5.0, 4.0, 3.0 and 2.1 MPa respectively to evaluate its effect on gas and water production. As expected, a higher BHP (corresponding to a lower dissociation driving force) resulted in a slower gas and water production. At a BHP of 2.1 MPa, thermal buffering was observed below ice point (272.7 K), accompanied by enhanced gas production. By lowering BHP from 5.0 MPa to 2.1 MPa, the percentage methane produced increased from 45.5% to 83.0%; whereas the cumulative water production decreased from 217 mL to 157 mL. The difference in gas and water production was attributed to the preferential production of aqueous phase at higher BHPs (5.0 and 4.0 MPa) nearing the end of hydrate dissociation whereby less hydrates were present. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据