4.7 Article

89Zr-Lumretuzumab PET Imaging before and during HER3 Antibody Lumretuzumab Treatment in Patients with Solid Tumors

期刊

CLINICAL CANCER RESEARCH
卷 23, 期 20, 页码 6128-6137

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-17-0311

关键词

-

类别

资金

  1. ERC
  2. F. Hoffmann-La Roche Ltd

向作者/读者索取更多资源

Purpose: We evaluated biodistribution and tumor targeting of Zr-89-lumretuzumab before and during treatment with lumretuzumab, a human epidermal growth factor receptor 3 (HER3)targeting monoclonal antibody. Experimental Design: Twenty patients with histologically confirmed HER3-expressing tumors received Zr-89-lumretuzumab and underwent positron emission tomography (PET). In part A, (89)-Zr-lumretuzumab was given with additional, escalating doses of unlabeled lumretuzumab, and scans were performed 2, 4, and 7 days after injection to determine optimal imaging conditions. In part B, patients were scanned following tracer injection before (baseline) and after a pharmacodynamic (PD)-active lumretuzumab dose for saturation analysis. HER3 expression was determined immunohistochemically in skin biopsies. Tracer uptake was calculated as standardized uptake value (SUV). Results: Optimal PET conditions were found to be 4 and 7 days after administration of Zr-89-lumretuzumab with 100-mg unlabeled lumretuzumab. At baseline using 100-mg unlabeled lumretuzumab, the tumor SUVmax was 3.4(+/- 1.9) at 4 days after injection. SUVmean values for normal blood, liver, lung, and brain tissues were 4.9, 6.4, 0.9 and 0.2, respectively. Saturation analysis (n = 7) showed that 4 days after lumretuzumab administration, tumor uptake decreased by 11.9% (+/- 8.2), 10.0% (+/- 16.5), and 24.6% (+/- 20.9) at PD-active doses of 400, 800, and 1,600 mg, respectively, when compared with baseline. Membranous HER3 was completely downregulated in paired skin biopsies already at and above 400-mg lumretuzumab. Conclusions: PET imaging showed biodistribution and tumor-specific Zr-89-lumretuzumab uptake. Although, PD-active lumretuzumab doses decreased Zr-89-lumretuzumab uptake, there was no clear evidence of tumor saturation by PET imaging as the tumor SUV did not plateau with increasing doses. (C) 2017 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据