4.7 Article

Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13068-017-0916-8

关键词

CO2 fixation; Biomass; Biomitigation; Microalgae; Chlorella; Genetic engineering; Aldolase

资金

  1. National Natural Science Foundation of China [31471717, 31571807]
  2. National High Technology Research and Development Program of China [2012AA023107]
  3. Public Science and Technology Research Funds Projects of Ocean [201505032]

向作者/读者索取更多资源

Background: Photosynthetic microalgae are emerging as potential biomass feedstock for sustainable production of biofuels and value-added bioproducts. CO2 biomitigation through these organisms is considered as an eco-friendly and promising alternative to the existing carbon sequestration methods. Nonetheless, the inherent relatively low photosynthetic capacity of microalgae has hampered the practical use of this strategy for CO2 biomitigation applications. Results: Here, we demonstrate the feasibility of improving photosynthetic capacity by the genetic manipulation of the Calvin cycle in the typical green microalga Chlorella vulgaris. Firstly, we fused a plastid transit peptide to upstream of the enhanced green fluorescent protein (EGFP) and confirmed its expression in the chloroplast of C. vulgaris. Then we introduced the cyanobacterial fructose 1,6-bisphosphate aldolase, guided by the plastid transit peptide, into C. vulgaris chloroplast, leading to enhanced photosynthetic capacity (similar to 1.2-fold) and cell growth. Molecular and physiochemical analyses suggested a possible role for aldolase overexpression in promoting the regeneration of ribulose 1,5-bisphosphate in the Calvin cycle and energy transfer in photosystems. Conclusions: Our work represents a proof-of-concept effort to enhance photosynthetic capacity by the engineering of the Calvin cycle in green microalgae. Our work also provides insights into targeted genetic engineering toward algal trait improvement for CO2 biomitigation uses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据