4.6 Article

A new mutation-independent approach to cancer therapy: Inhibiting oncogenic RAS and MYC, by targeting mitochondrial biogenesis

期刊

AGING-US
卷 9, 期 10, 页码 2095-+

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/aging.101304

关键词

RAS; MYC; cancer stem cells (CSCs); cancer therapy; mitochondrial oxidative stress

资金

  1. University of Manchester

向作者/读者索取更多资源

Here, we used MCF7 cells as a model system to interrogate how MYC/RAS co-operativity contributes to metabolic flux and stemness in breast cancer cells. We compared the behavior of isogenic MCF7 cell lines transduced with c-Myc or H-Ras (G12V), either individually or in combination. Cancer stem cell (CSC) activity was measured using the mammosphere assay. c-Myc augmented both mammosphere formation and mitochondrial respiration, without any effects on glycolytic flux. In contrast, H-Ras (G12V) synergistically augmented both mammosphere formation and glycolysis, but only in combination with c-Myc, directly demonstrating MYC/RAS co-operativity. As c-Myc is known to exert its effects, in part, by stimulating mitochondrial biogenesis, we next examined the effects of another stimulus known to affect mitochondrial biogenesis, i.e. ROS production. To pharmacologically induce oxidative stress, we used Rotenone (a mitochondrial inhibitor) to target mitochondrial complex I. Treatment with Rotenone showed bi-phasic effects; low-dose Rotenone (1 to 2.5 nM) elevated mammosphere formation, while higher doses (10 to 100 nM) were inhibitory. Importantly, the stimulatory effects of Rotenone on CSC propagation were blocked using a mitochondrial-specific anti-oxidant, namely Mito-tempo. Thus, mild mitochondrial oxidative stress, originating at Complex I, was sufficient to pheno-copy the effects of c-Myc, effectively promoting CSC propagation. To validate the idea that mitochondrial biogenesis is required to stimulate CSC propagation, we employed Doxycycline, a well-established inhibitor of mitochondrial protein translation. Treatment with Doxycycline was indeed sufficient to block the stimulatory effects of H-Ras (G12V), c-Myc, and Rotenone on CSC propagation. As such, Doxycycline provides a strong rationale for designing new therapeutics to target mitochondrial biogenesis, suggesting a new mutation-independent approach to cancer therapy. In support of this notion, most currently successful anti-cancer agents therapeutically target cell phenotypes, such as increased cell proliferation, rather than specific genetic mutations. Remarkably, we demonstrated that Doxycycline inhibits the effects of diverse oncogenic stimuli, of both i) genetic (MYC/RAS) and ii) environmental (Rotenone) origins. Finally, we discuss the advantages of our Proteomics-to-Genomics (PTG) approach for in silico validation of new biomarkers and novel drug targets. In this context, we developed a new Myc-based Mito-Signature consisting of 3 mitochondrial genes (HSPD1; COX5B; TIMM44) for effectively predicting tumor recurrence (HR=4.69; p=2.4e-08) and distant metastasis (HR=4.94; p=2.8e-07), in ER(+) in breast cancer patients. This gene signature could serve as a new companion diagnostic for the early prediction of treatment failure in patients receiving hormonal therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据