4.7 Article

Volatility-resolved source apportionment of primary and secondary organic aerosol over Europe

期刊

ATMOSPHERIC ENVIRONMENT
卷 167, 期 -, 页码 1-10

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2017.08.005

关键词

PSAT; Reaction generations; Source apportionment; Volatility

资金

  1. European Union's Horizon research and innovation programme through EUROCHAMP [730997]

向作者/读者索取更多资源

A three-dimensional regional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions, PMCAMx) was applied over Europe combined with a source apportionment algorithm, the Particulate Source Apportionment Technology (PSAT), in order to quantify the sources which contribute to the primary and secondary organic aerosol (OA) during different seasons. The PSAT algorithm was first extended to allow the quantification of the sources of OA as a function of volatility. The most significant OA sources during May were biogenic, while during February residential wood combustion and during September wildfires dominated. The contributions of the various sources have strong spatial dependence. Wildfires were significant OA sources (38% of the OA) for Russia during September, but had a much lower impact (5%) in Scandinavia. The above results are in general consistent with the findings of the CARBOSOL project for selected sites in Europe. For remote sites such as Finokalia in Crete, more than 90% of the OA has undergone two or more generations of oxidation for all seasons. This highly processed oxidized OA is predicted to also dominate over much of Europe during the summer and fall. The first generation SOA is predicted to represent 20-30% of the OA in central and northern Europe during these photochemically active periods. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据