4.8 Article

Stability of Wake-Sleep Cycles Requires Robust Degradation of the PERIOD Protein

期刊

CURRENT BIOLOGY
卷 27, 期 22, 页码 3454-+

出版社

CELL PRESS
DOI: 10.1016/j.cub.2017.10.014

关键词

-

资金

  1. NIH [NS-099813, R01-GM057587, R01-CA076584]
  2. FSU Department of Biomedical Sciences
  3. Korea Advanced Institute of Science and Technology [G04150020]
  4. National Research Foundation of Korea [N01160447]
  5. POSCO
  6. Ministry of Science, ICT & Future Planning, Republic of Korea [G04150020] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  7. National Research Foundation of Korea [21A20131412859, 2016R1C1B3008468] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Robustness in biology is the stability of phenotype under diverse genetic and/or environmental perturbations. The circadian clock has remarkable stability of period and phase that-unlike other biological oscillators-is maintained over a wide range of conditions. Here, we show that the high fidelity of the circadian system stems from robust degradation of the clock protein PERIOD. We show that PERIOD degradation is regulated by a balance between ubiquitination and deubiquitination, and that disruption of this balance can destabilize the clock. In mice with a loss-of-function mutation of the E3 ligase gene beta-Trcp2, the balance of PERIOD degradation is perturbed and the clock becomes dramatically unstable, presenting a unique behavioral phenotype unlike other circadian mutant animal models. We believe that our data provide a molecular explanation for how circadian phases, such as wake-sleep onset times, can become unstable in humans, and we present a unique mouse model to study human circadian disorders with unstable circadian rhythm phases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据