4.8 Article

Catalytically Initiated Gel-in-Gel Printing of Composite Hydrogels

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 46, 页码 40898-40904

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b14177

关键词

3D printing; hydrogel; hydrogel composites; catalytic polymerization; direct-write 3D printing

资金

  1. University of Washington

向作者/读者索取更多资源

Herein, we describe a method to 3D print robust hydrogels and hydrogel composites via gel-in-gel 3D printing with catalytically activated polymerization to induce cross-linking. A polymerizable shear-thinning hydrogel ink with tetramethylethylenediamine as catalyst was directly extruded into a shear-thinning hydrogel support bath with ammonium persulfate as initiator in a pattern-wise manner. When the two gels came into contact, the free radicals generated by the catalyst initiated the free-radical polymerization of the hydrogel ink. Unlike photocuring, a catalyst-initiated polymerization is suitable for printing hydrogel composites of varying opacity, since it does not depend upon light penetration through the sample. The hydrogel support bath also exhibited a temperature-responsive behavior in which the gel melted upon cooling below 16 degrees C. Therefore, the printed object was easily removed by cooling the gel to a liquid state. Hydrogel composites with graphene oxide and multiwalled carbon nanotubes (MWCNTs) were successfully printed. The printed composites with MWCNTs afforded photothermally active objects, which have utility as stimuli-responsive actuators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据