4.7 Article

Structure-Dependent Dissolution and Restructuring of Calcite Surfaces by Organophosphonates

期刊

CRYSTAL GROWTH & DESIGN
卷 17, 期 11, 页码 5867-5874

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.7b00959

关键词

-

资金

  1. German Research Foundation [KU1980/7-1]
  2. University of Crete [KA 3517]

向作者/读者索取更多资源

Organophosphonates are well-known to strongly interact with the surfaces of various minerals, such as brucite, gypsum, and barite. In this work, we study the influence of six systematically varied organophosphonate molecules (tetraphosphonates and diphosphonates) on the dissolution process of the (10.4) surface of calcite. In order to pursue a systematic study, we have selected organophosphonates that exhibit similar structural features, but also systematic architectural differences. The effect of this class of additives on the dissolution process of the calcite (10.4) surface is evaluated using in situ dynamic atomic force microscopy. For all of the six organophosphonate derivatives, we observe a pronounced restructuring of the (10.4) cleavage plane of calcite, demonstrated by the formation of characteristically shaped etch pits. To elucidate their specific influence on the dissolution process of calcite (10.4), we vary systematically the number of functional end groups (two for the tetraphosphonates and one for the diphosphonates), the spacing between the functional ends through separating methylene groups (2, 6, and 12), as well as the pH of the solution (ranging from 2.6 up to 11.7). For each of the two groups of the organophosphonate derivatives, we observe the very same formation of etch pits (olive-shaped for the tetraphosphonate and triangular-shaped for the diphosphonate molecules), respectively. This finding indicates that the number of functional ends decisively determines the resulting calcite (10.4) surface morphology, whereas the size of the organophosphonate molecule within one group seems not to play any important role. For all of the molecules, the restructuring process of calcite (10.4) is qualitatively independent of the pH of the solution and, therefore, independent of the protonation/deprotonation states of the molecules. Our results reveal a general property of organophosphonate derivatives to induce surface restructuring of the calcite (10.4), which seems to, be very robust against variations in both, different molecular structures and different protonation/deprotonation states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据