4.7 Article

Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition

期刊

ULTRASONICS SONOCHEMISTRY
卷 35, 期 -, 页码 45-50

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultsonch.2016.09.001

关键词

Hollow and solid lignin colloids; Layer by layer deposition; UV absorbance by lignin

向作者/读者索取更多资源

Lignin, a major constituent of plant cell-wall and by-product of paper based industries is traditionally used for low value applications (heat or electricity generation), but its potential in high value utilization has also been widely reported. In this work, we synthesized lignin colloidal particles using ultrasonic spray-freezing route without any chemical functionalization of material, and stabilized it by electrostatic route. As per our knowledge, this technique is the first reported method which yields hollow/solid lignin colloids having good particle size control without any chemical functionalization of material. Dioxane soluble fraction of Alkali lignin (o-lignin) was used without any further chemical functionalization. o-lignin dissolved in DMSO was sprayed upon liquid nitrogen cooled copper plate using an ultrasonic nebulizer. The resulting frozen droplets were collected and found to possess hollow and solid morphology. Particles thus obtained were characterized for their size distribution and morphology, and-compared to theoretically anticipated values. Size tunability of particles in relation to concentration of sprayed lignin solution was also studied. In addition to that, six layers of lignin colloids were deposited on quartz slide with the aid of negligible UV absorbing polyelectrolyte aqueous solution PDADMAC [Poly (diallyldimethylammonium chloride)]. Gradation in UV absorbing ability of lignin with increase in number of layers could be clearly observed. Hollow and solid lignin colloids, apart from their application in sunscreen cosmetics owing to their UV absorbing ability, show potential applications in drug delivery also. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据