4.7 Article

Quantum theory of electromagnetic fields in a cosmological quantum spacetime

期刊

PHYSICAL REVIEW D
卷 96, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.96.106007

关键词

-

资金

  1. research council of the University of Tehran
  2. Bonyad-e-Melli Nokhbegan of Iran (INEF)
  3. FAPES
  4. CAPES
  5. grant of Polish Narodowe Centrum Nauki [2011/02/A/ST2/00300]

向作者/读者索取更多资源

The theory of quantum fields propagating on an isotropic cosmological quantum spacetime is reexamined by generalizing the scalar test field to an electromagnetic (EM) vector field. For any given polarization of the EM field on the classical background, the Hamiltonian can be written in the form of the Hamiltonian of a set of decoupled harmonic oscillators, each corresponding to a single mode of the field. In transition from the classical to quantum spacetime background, following the technical procedure given by Ashtekar et al. [Phys. Rev. D79, 064030 (2009)], a quantum theory of the test EM field on an effective (dressed) spacetime emerges. The nature of this emerging dressed geometry is independent of the chosen polarization, but it may depend on the energy of the corresponding field mode. Specifically, when the backreaction of the field on the quantum geometry is negligible (i.e., a test field approximation is assumed), all field modes probe the same effective background independent of the mode's energy. However, when the backreaction of the field modes on the quantum geometry is significant, by employing a Born-Oppenheimer approximation, it is shown that a rainbow (i.e., a mode-dependent) metric emerges. The emergence of this mode-dependent background in the Planck regime may have a significant effect on the creation of quantum particles. The production amount on the dressed background is computed and is compared with the familiar results on the classical geometry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据