4.7 Article

Acoustic reflectivity minimization in Capacitive Micromachined Ultrasonic Transducers (CMUTs)

期刊

ULTRASONICS
卷 73, 期 -, 页码 130-139

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2016.09.001

关键词

Reverberation; Ultrasound imaging; Reflectivity; CMUT

向作者/读者索取更多资源

When Capacitive Micromachined Ultrasonic Transducers (CMUTs) are coupled with water, they show high front-face acoustic reflectivity, due to the impedance mismatch between the transducer substrate material, typically based on silicon, and the propagation medium. During pulse-echo operation, surface reflectivity is responsible for multiple reflections of the received acoustic signals, which result in a set of unwanted echoes. In ultrasound imaging applications, this signal reverberation creates artifacts and reduces the image contrast. In this paper, a method to reduce front-face reflectivity is proposed, and a Reverberation Level (RL) index is introduced in order to quantify the unwanted reverberation of the signal returned to the transducer surface. The proposed method combines the increase of the bias voltage, the application of an optimized resistive load and the addition of a low-impedance acoustic backing to CMUTs realized by Reverse Fabrication Process (RFP). In this way, the mechanical energy conversion and transmission to the backing, as well as the electrical energy dissipation, are improved, thus reducing the energy reflection into the medium. The proposed method is analyzed by means of Finite Element simulations and is experimentally validated by characterizing single-element RFP-CMUTs, provided with different backing materials and electrical loads. In the analyzed prototypes, a RL reduction of 8.6 dB is obtained. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据