4.2 Article

Transthyretin Exerts Pro-Apoptotic Effects in Human Retinal Microvascular Endothelial Cells Through a GRP78-Dependent Pathway in Diabetic Retinopathy

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 43, 期 2, 页码 788-800

出版社

KARGER
DOI: 10.1159/000481562

关键词

Transthyretin; Diabetic retinal; Human retinal microvascular endothelial cells; Apoptosis; GRP78-depedent pathway

资金

  1. National Natural Science Foundation of China [81400415]
  2. Natural Science Foundation of Jiangsu Province [BK20160053, BK20151105]
  3. Youth Medical Talent Project of Jiangsu Province [QNRC2016182]
  4. Project of Hospital Management Center of Wuxi [YGZXM1509]

向作者/读者索取更多资源

Background/Aims: Diabetic retinopathy (DR) is one of the main causes of blindness in the world. Our previous study showed that transthyretin (TTR) regulates key genes in the Tie2 pathway and inhibits the development of neovascularization in DR, but the mechanism is still unclear. Here, we investigated how TTR affects the progression of neovascularization in DR. Methods: Natural and simulated DR media (hyperglycemia and hypoxia) were used to culture human retinal microvascular endothelial cells (hRECs). Flow cytometry was employed to investigate the effect of TTR on apoptosis of hRECs. Fluorescent labeling and immunofluorescence staining were used to determine the TTR distribution in hRECs. The membrane proteins of hRECs were extracted and applied to a sepharose-TTR column, and the captured proteins were identified by Mass Spectrometric analysis. Gene knock-down and western blotting assays were used to study the key signal pathway of the most abundant identified protein. Results: TTR induced apoptosis of hRECs in an environment that simulated hypoxia. Immunofluorescent staining showed that TTR could enter the nuclei of hRECs. A total of 30 unique TTR-captured proteins were identified by Mass Spectrometry, and glucose-regulated protein 78 (GRP78) was one of the most abundant. Western blotting and gene knock-down indicated that TTR might upregulate GRP78 and facilitate apoptosis through the eIF2 alpha/CHOP pathway. Conclusions: In the DR environment (hyperglycemia and hypoxia), TTR was shown to repress neovascularization by promoting apoptosis of hRECs through a GRP78-dependent pathway. (c) 2017 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据