4.8 Article

Graphene in the Design and Engineering of Next-Generation Neural Interfaces

期刊

ADVANCED MATERIALS
卷 29, 期 42, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201700909

关键词

2D materials; neuroprosthetics; nanomedicine; bioelectronics; neuroscience

资金

  1. European Union's Horizon research and innovation programme [696656]
  2. Spanish MINECO [SEV-2013-0295]
  3. CERCA Programme/Generalitat de Catalunya
  4. P-SPHERE COFUND - Horizon Marie Sklodowska-Curie Actions
  5. EPSRC [EP/K005014/1] Funding Source: UKRI

向作者/读者索取更多资源

Neural interfaces are becoming a powerful toolkit for clinical interventions requiring stimulation and/or recording of the electrical activity of the nervous system. Active implantable devices offer a promising approach for the treatment of various diseases affecting the central or peripheral nervous systems by electrically stimulating different neuronal structures. All currently used neural interface devices are designed to perform a single function: either record activity or electrically stimulate tissue. Because of their electrical and electrochemical performance and their suitability for integration into flexible devices, graphene-based materials constitute a versatile platform that could help address many of the current challenges in neural interface design. Here, how graphene and other 2D materials possess an array of properties that can enable enhanced functional capabilities for neural interfaces is illustrated. It is emphasized that the technological challenges are similar for all alternative types of materials used in the engineering of neural interface devices, each offering a unique set of advantages and limitations. Graphene and 2D materials can indeed play a commanding role in the efforts toward wider clinical adoption of bioelectronics and electroceuticals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据