4.6 Article

Pyrosequencing reveals profiles of soil bacterial communities after 12 years of conservation management on irrigated crop rotations

期刊

APPLIED SOIL ECOLOGY
卷 121, 期 -, 页码 65-73

出版社

ELSEVIER
DOI: 10.1016/j.apsoil.2017.09.031

关键词

Compost; Cover crops; Next-generation sequencing; Soil health; Tillage

资金

  1. Alberta Agricultural Research Institute
  2. Potato Growers of Alberta
  3. Alberta Pulse Growers
  4. Lantic Inc.
  5. Pulse Science Cluster
  6. Agriculture and Agri-Food Canada's Matching Investment Initiative

向作者/读者索取更多资源

Potato and sugar beet, which are widely grown in southern Alberta, may degrade soil quality because they return little C to the soil, and their harvesting methods cause soil disturbance that increases erosion risk. To reverse these effects, a 12-yr study was established to evaluate soil conservation (CONS) management systems for rotations that included potato, sugar beet, dry bean and wheat. These systems, comprising addition of feedlot manure compost, reduced tillage, diverse crop rotations and use of cover crops, were applied to 3- to 5-yr crop rotations. They were compared with conventional (CONV) management systems that did not have any of the CONS practices. In the final year of the study, pyrosequencing was used to determine differences in soil bacterial community profiles between the two systems (CONS vs. CONV) in wheat rhizosphere and bulk soil. Thirteen phyla were observed, and the most abundant were Proteobacteria (39.6%), Actinobacteria (19.1%) and Acidobacteria (14.9%). Soil bacterial a-diversity increased under CONS relative to CONV management. However, whereas the relative abundances of Bacteroidetes and Firmicutes were greater under CONS than CONV management, the reverse was observed for Acidobacteria and Gemmatimonadetes. Proteobacteria were also more abundant under CONS than CONV management, but only in bulk soil. The community structures of the bacterial communities were in agreement with the differences in relative abundances. These differences were consistent with the ecological classification of soil bacteria as copiotrophic or oligotrophic. Therefore, CONS management systems altered the soil bacterial community profiles and increased the productivity of these soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据