4.7 Article

Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2017.08.016

关键词

Infinite-dimensional Bayesian inverse problems; Curse of dimensionality; Hessian-based adaptive sparse quadrature; Sparse grid; Gaussian prior; Dimension-independent convergence analysis

资金

  1. DARPA's EQUiPS program [W911NF-15-2-0121]
  2. National Science Foundation [CBET-1508713, ACI-1550593]
  3. DOE [DE-SC0010518, DE-SC0009286]
  4. Direct For Computer & Info Scie & Enginr
  5. Office of Advanced Cyberinfrastructure (OAC) [1550593] Funding Source: National Science Foundation
  6. U.S. Department of Energy (DOE) [DE-SC0009286] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

In this work we propose and analyze a Hessian-based adaptive sparse quadrature to compute infinite-dimensional integrals with respect to the posterior distribution in the context of Bayesian inverse problems with Gaussian prior. Due to the concentration of the posterior distribution in the domain of the prior distribution, a prior-based parametrization and sparse quadrature may fail to capture the posterior distribution and lead to erroneous evaluation results. By using a parametrization based on the Hessian of the negative log-posterior, the adaptive sparse quadrature can effectively allocate the quadrature points according to the posterior distribution. A dimension-independent convergence rate of the proposed method is established under certain assumptions on the Gaussian prior and the integrands. Dimension-independent and faster convergence than O(N-1/2) is demonstrated for a linear as well as a nonlinear inverse problem whose posterior distribution can be effectively approximated by a Gaussian distribution at the MAP point. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据