4.8 Article

Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis

期刊

APPLIED ENERGY
卷 206, 期 -, 页码 312-328

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.08.194

关键词

Methanol reforming; Diffuser; Hydrogen production; Estimated net power of fuel cell

资金

  1. Ministry of Science and Technology of the Republic of China [MOST 105-2221-E-168-024]

向作者/读者索取更多资源

Proton exchange membrane fuel cells (PEMFC) connected with a methanol steam reformer designed to enhance its performance is considered as a promising future power source. Enhancing the performance of a cylindrical methanol steam reformer due to diffuser effects was then investigated applying three-dimensional computational fluid dynamics by the SIMPLE-C algorithm and an Arrhenius form of reaction model. The effect of the angle and length of the diffuser, and wall temperature have been explored on heat and fluid flow, methanol conversion, hydrogen production, carbon monoxide reduction, as well as estimated net power of fuel cell with the same catalyst volume and entrance condition in a cylindrical methanol steam reformer. The results indicate that the diffuser obviously enhances methanol conversion and hydrogen production of a cylindrical methanol steam reformer. In comparison with a traditional reformer, the reformer with a diffuser of theta(d) = degrees 6 and L-d = 75 mm obtains the maximum enhancement of 22.96% in methanol conversion, 44.62% in hydrogen production, and 24.59% in estimated net power of fuel cell at wall temperature of 250 degrees C. In addition, the novel reformer with a diffuser of theta(d) = degrees 9 and L-d = 100 mm generates the maximum reduction of 44.17% in CO production at T-w = 250 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据