4.6 Article

Impact of Missing Physiologic Data on Performance of the Simplified Acute Physiology Score 3 Risk-Prediction Model*

期刊

CRITICAL CARE MEDICINE
卷 45, 期 12, 页码 2006-2013

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/CCM.0000000000002706

关键词

intensive care unit; intensive care unit mortality; health status indicator; risk adjustment; severity of illness

资金

  1. Swedish Intensive Care Registry
  2. Department of Cardiothoracic Anaesthesia and Intensive Care, University Hospital, Linkoping, Sweden

向作者/读者索取更多资源

Objectives: The Simplified Acute Physiology 3 outcome prediction model has a narrow time window for recording physiologic measurements. Our objective was to examine the prevalence and impact of missing physiologic data on the Simplified Acute Physiology 3 model's performance. Design: Retrospective analysis of prospectively collected data. Setting: Sixty-three ICUs in the Swedish Intensive Care Registry. Patients: Patients admitted during 2011-2014 (n = 107,310). Interventions: None. Measurements and Main Results: Model performance was analyzed using the area under the receiver operating curve, scaled Brier's score, and standardized mortality rate. We used a recalibrated Simplified Acute Physiology 3 model and examined model performance in the original dataset and in a dataset of complete records where missing data were generated (simulated dataset). One or more data were missing in 40.9% of the admissions, more common in survivors and low-risk admissions than in nonsurvivors and high-risk admissions. Discrimination did not decrease with one to two missing variables, but accuracy was highest with no missing data. Calibration was best in the original dataset with a mix of full records and records with some missing values (area under the receiver operating curve was 0.85, scaled Brier 27%, and standardized mortality rate 0.99). With zero, one, and two data missing, the scaled Brier was 31%, 26%, and 21%; area under the receiver operating curve was 0.84, 0.87, and 0.89; and standardized mortality rate was 0.92, 1.05 and 1.10, respectively. Datasets where the missing data were simulated for oxygenation or oxygenation and hydrogen ion concentration together performed worse than datasets with these data originally missing. Conclusions: There is a coupling between missing physiologic data, admission type, low risk, and survival. Increased loss of physiologic data reduced model performance and will deflate mortality risk, resulting in falsely high standardized mortality rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据