4.4 Article

Alanyl-glutamine but not glycyl-glutamine improved the proliferation of enterocytes as glutamine substitution in vitro

期刊

AMINO ACIDS
卷 49, 期 12, 页码 2023-2031

出版社

SPRINGER WIEN
DOI: 10.1007/s00726-017-2460-z

关键词

Glutamine; Dipeptide; Mitochondrial bioenergetics; Protein turnover; Enterocyte

资金

  1. National Natural Science Foundation of China [31330075, 31372326, 31672433, 31301989, 31560640]
  2. Key Programs of frontier scientific research of the Chinese Academy of Sciences [QYZDY-SSW-SMC008]
  3. National Basic Research Program of China [2013CB127302]

向作者/读者索取更多资源

The synthetic dipeptides alanyl-glutamine (Ala-Gln) and glycyl-glutamine (Gly-Gln) are used as Gln substitution to provide energy source in the gastrointestinal tract due to their high solubility and stability. This study aimed to investigate the effects of Gln, Ala-Gln and Gly-Gln on mitochondrial respiration and protein turnover of enterocytes. Intestinal porcine epithelial cells (IPEC-J2) were cultured for 2 days in Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing 2.5 mM Gln, Ala-Gln or Gly-Gln. Results from 5-ethynyl-2'-deoxyuridine incorporation and flow cytometry analysis indicated that there were no differences in proliferation between free Gln and Ala-Gln-treated cells, whereas Gly-Gln treatment inhibited the cell growth compared with Gln treatment. Significantly lower mRNA expressions of Sp1 and PepT1 were also observed in Gly-Gln-treated cells than that of Ala-Gln treatment. Ala-Gln treatment increased the basal respiration and ATP production, compared with free Gln and Gly-Gln treatments. There were no differences in protein turnover between free Gln and Ala-Gln-treated cells, but Gly-Gln treatment reduced protein synthesis and increased protein degradation. Ala-Gln treatment stimulated mTOR activation whereas Gly-Gln decreased mTOR phosphorylation and increased the UB protein expression compared with free Gln treatment. These results indicate that Ala-Gln has the very similar functional profile to free Gln in porcine enterocytes in vitro and can be substituted Gln as energy and protein sources in the gastrointestinal tract.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据