4.2 Review

Interaction between bone and glucose metabolism

期刊

ENDOCRINE JOURNAL
卷 64, 期 11, 页码 1043-1053

出版社

JAPAN ENDOCRINE SOC
DOI: 10.1507/endocrj.EJ17-0323

关键词

Diabetes mellitus; Osteoporosis; Osteocalcin; Advanced glycation end products; Adenosine monophosphate-activated protein kinase

资金

  1. [15K09433]
  2. Grants-in-Aid for Scientific Research [15K09433] Funding Source: KAKEN

向作者/读者索取更多资源

Accumulating evidence has shown that bone and glucose metabolism are closely associated with each other. Since the risk of osteoporotic fractures is increased in patients with diabetes mellitus (DM), osteoporosis is recently recognized as one of diabetic complications, called DM-induced bone fragility. Previous studies showed that collagen cross-links of advanced glycation end products (AGEs) and dysfunctions of osteoblast and osteocyte are involved in DM-induced bone fragility. Circulating levels of AGEs and homocysteine are increased in patients with DM, and they directly impair the functions of osteoblast and osteocyte, resulting in decreased bone formation and bone remodeling. On the other hand, bone is recently recognized as an endocrine organ. Previous studies based on in vitro and animal studies showed that osteocalcin, which is specifically expressed in osteoblasts and secreted into the circulation, may regulate glucose homeostasis. Although several clinical studies reported the relationship between osteocalcin and glucose metabolism, further large-scale and intervention studies are necessary to confirm the beneficial effects of osteocalcin on glucose metabolism in human. It has been shown that adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor, is involved in bone metabolism. Adiponectin and metformin stimulate osteocalcin expression and the differentiation of osteoblasts via AMPK activation. Also, AMPK activation protects against oxidative stress-induced apoptosis of osteocytes. These findings suggest that AMPK in osteoblasts and osteocytes may be a therapeutic target for DM-induced bone fragility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据