4.8 Article

Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 49, 页码 43287-43299

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b13713

关键词

pPFDA coating; CNT micropillars; elastocapillary densification; superhydrophobicity; omniphobicity; wettability control

资金

  1. MIT Department of Mechanical Engineering
  2. Air Force Office of Scientific Research [FA9550-11-1-0089]
  3. University of Toledo
  4. MIT-Chevron university partnership program
  5. MIT Institute for Solider Nanotechnologies [DAAD-19-02D-002]
  6. National Science Foundation [CMMI-1463181]
  7. AFOSR
  8. Skoltech
  9. U.S. Funding for CNT synthesis

向作者/读者索取更多资源

Scalable manufacturing of structured materials with engineered nanoporosity is critical for applications in energy storage devices (i.e., batteries and supercapacitors) and in the wettability control of surfaces (i.e., superhydrophobic and superomniphobic surfaces). Patterns formed in arrays of vertically aligned carbon nanotubes (VA-CNTs) have been extensively studied for these applications. However, the as-deposited features are often undesirably altered upon liquid infiltration and evaporation because of capillarity-driven aggregation of low density CNT forests. Here, it is shown that an ultrathin, conformal, and low-surface-energy layer of poly perfluorodecyl acrylate, poly(1H,1H,2H,2H-perfluorodecyl acrylate) (pPFDA), makes the VA-CNTs robust against surface-tension-driven aggregation and densification. This single vapor-deposition step allows the fidelity of the as-deposited VA-CNT patterns to be retained during wet processing, such as inking, and subsequent drying. It is demonstrated how to establish omniphobicity or liquid infiltration by controlling the surface morphology. Retaining a crust of entangled CNTs and pPFDA aggregates on top of the patterned VA-CNTs produces micropillars with re-entrant features that prevent the infiltration of low-surface-tension liquids and thus gives rise to stable omniphobicity. Plasma treatments before and after polymer deposition remove the crust of entangled CNTs and pPFDA aggregates and attach hydroxyl groups to the CNT tips, enabling liquid infiltration yet preventing densification of the highly porous CNTs. The latter observation demonstrates the protective character of the pPFDA coating with the potential application of these surfaces for direct contact printing of microelectronic features.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据