4.6 Article

Temperature-Dependent Photoluminescence Emission from Unstrained and Strained GaSe Nanosheets

期刊

MATERIALS
卷 10, 期 11, 页码 -

出版社

MDPI AG
DOI: 10.3390/ma10111282

关键词

GaSe; photoluminescence; strain; temperature dependence

资金

  1. Beijing Institute of Technology Research Fund Program for Young Scholars [6600028398]

向作者/读者索取更多资源

Two-dimensional A(III)B(VI) layered semiconductors have recently attracted great attention due to their potential applications in piezo-phototronics and optoelectronics. Here, we report the temperature-dependent photoluminescence (PL) of strained and unstrained GaSe flakes. It is found that, as the temperature increases, the PL from both the strained (wrinkled) and unstrained (flat) positions show a prominent red-shift to low energies. However, for the flat case, the slope of PL energy versus temperature at the range of 163-283 K is about -0.36 meV/K, which is smaller than that of the wrinkled one (-0.5 meV/K). This is because more strain can be introduced at the freestanding wrinkled position during the temperature increase, thus accelerates the main PL peak (peak I, direct band gap transition) shift to lower energy. Additionally, for the wrinkled sheet, three new exciton states (peaks III, IV, and V) appear at the red side of peak I, and the emission intensity is highly dependent on the temperature variation. These peaks can be attributed to the bound exciton recombination. These findings demonstrate an interesting route for optical band gap tuning of the layered GaSe sheet, which are important for future optoelectronic device design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据