4.6 Article

Incorporation of antibacterial agent derived deep eutectic solvent into an active dental composite

期刊

DENTAL MATERIALS
卷 33, 期 12, 页码 1445-1455

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2017.09.014

关键词

Dental composite; Deep eutectic solvent; Benz alkonium chloride; Antibacterial; Mechanical properties

向作者/读者索取更多资源

Objective. To incorporate an antibacterial agent derived deep eutectic solvent (DES) into a dental resin composite, and investigate the resulting mechanical properties and antibacterial effects. Method. The DES was derived from benzalkonium chloride (BC) and acrylic acid (AA) and was incorporated into the dental resin composite through rapid mixing. A three-point bending test was employed to measure the flexural strength of the composite. An agar diffusion test was used to investigate antibacterial activity. Artificial (accelerated) aging was undertaken by immersing the composites in buffer solutions at an elevated temperature for up to 4 weeks. UV-vis spectrophotometry and NMR analysis were conducted to study BC release from the composite. Finally, the biocompatibility of the composite materials was evaluated using osteoblast cell culture for 7 days. Results were compared to those of a control composite which contained no BC. Result. The DES-incorporated composite (DES-C) displayed higher flexural strength than a similar BC-incorporated composite BC (BC-C) for the same level of BC. The inclusion of BC conferred antibacterial activity to both BC-containing composites, although BC-C produced larger inhibition halos than DES-C at the same loading of BC. Control composites which contained no BC showed negligible antibacterial activity. After artificial aging, the DES-C composite showed better maintenance of the mechanical properties of the control compared with BC-C, although a decrease was observed during the three-point bending test, particularly upon storage at elevated temperatures. No BC release was detected in the aged solutions of DES-C, whereas the BC-C showed a linear increase in BC release with storage time. Significantly, cell viability results indicated that DES-C has better biocompatibility than BC-C. Significance. The incorporation of a BC-based DES into a dental resin composite provides a new strategy to develop antibacterial dental materials with better biocompatibility and longer effective lifetimes without sacrificing the intrinsic mechanical properties of the composite structure. (C) 2017 Published by Elsevier Ltd on behalf of The Academy of Dental Materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据